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ABSTRACT 

Summary: Here, we present ContEst, a tool for estimating the level 

of cross-individual contamination in next generation sequencing 

data.  We demonstrate the accuracy of ContEst across a range of 

contamination levels, sources, and read depths using sequencing 

data mixed in-silico at known concentrations.  We applied our tool to 

published cancer sequencing data sets and report their estimated 

contamination levels. 

Availability and Implementation: ContEst is a GATK (McKenna, et 

al., 2010) module, and distributed under a BSD style license at 

http://www.broadinstitute.org/cancer/cga/contest 

Contact: kcibul@broadinstitute.org , gadgetz@broadinstitute.org 

Supplementary information: Supplementary data is available at 

Bioinformatics online 

1 INTRODUCTION  

Next generation sequencing methods are generating vast amounts 

of short sequence reads for the purpose of studying DNA sequence 

variations, and identifying those that affect human disease.  Many 

novel methods allow for the interrogation of the structure of the 

genome with unprecedented sensitivity due to the digital nature of 

the data (Trapnell and Salzberg, 2009). Rare events present in only 

a fraction of the sequenced material, as is the case in somatic muta-

tion discovery in cancer genome studies (Chapman, et al., 2011) 

(Berger, et al., 2011), can be accurately detected by sequencing to 

greater read depth.  Moreover, genome partitioning techniques 

(Gnirke, et al., 2009) allow for even greater sensitivity at a lower 

cost by targeting only regions of interest. 

 

However, these methods can be heavily compromised by con-

tamination.  Three major classes of DNA contamination exist: 

cross-individual, within-individual, and cross-species.  Cross-

individual is the most critical to control, as even small levels of 

contamination can cause many false positives, particularly in con-

trastive tumor vs. normal cancer studies (Fig. 1a).  Within-

individual contamination, such as normal DNA contamination of 

tumor DNA in cancer studies, typically leads to decreased sensitiv-
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ity.  Cross-species contamination is easily detected by aligning to 

unique regions of potentially contaminating species. In order to 

address the most critical need, we developed ContEst to accurately 

estimate the cross-individual contamination level in next genera-

tion sequencing data. 

2 METHODS 

Given genotype information about the sequenced sample from a genotyp-

ing array in VCF format (http://www.1000genomes.org), general popula-

tion frequency information (provided with ContEst), and the sequencing 

data in BAM format (Li, et al., 2009), we use a Bayesian approach to calcu-

late the posterior probability of the contamination level and determine the 

maximum a posteriori probability (MAP) estimate of the contamination 

level.  

 

The method first identifies the homozygous SNP sites based on the array 

data, S≡{si}, i=1,…,N, and the alleles at these sites, A≡{Ai}. For each site, 

si, we denote the probability in the contaminating population to observe Ai 

at that site by fi, and therefore the probability to see the other allele is 1- fi . 

In addition, we denote by bij and eij the called base of the j-th read that 

covers si and its quality (represented by its probability of being incorrect), 

respectively. The number of reads that cover si, i.e. the depth at that site, is 

denoted by di. For a contamination fraction c, we can now calculate the 

posterior probability using the Bayes rule:  

Using a uniform prior on c, i.e. P(c)=1, and assuming that the reads (and 

noise) are independent and equivalent for all 3 types of substitutions and 

discarding sites suspected to be genotyping array data errors (see Supple-

mental Methods), we obtain: 

Where 

 

The qualities of bases are typically represented using a Phred-like Q-

scores, i.e. e=10–q/10. Finally, we evaluate the above equation for c ∈ [0,1]  

and normalize to 1 in order to get the posterior probability. The MAP esti-

mate of c is the mode of this distribution, and a confidence interval can be 
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calculated using the minimal interval containing 95% of the posterior prob-

ability.  Note that reads that do not support a known allele at S contribute a 

factor that is independent of c, hence we can ignore them in the calculation.  

 

For tumor samples, we recommend using the genotypes of the patient-

matched normal when available instead of the tumor, since homozygous 

SNPs in regions of loss-of-heterozygosity in the tumor will interpret con-

tamination with normal cells from the same patient as foreign DNA since 

they have different genotypes. 

3 RESULTS 

 

Using next generation sequencing data from the TCGA Ovarian 

publication (TCGA Research Network, 2011), we identified 12 

exome-capture BAMs with low contamination, having very few 

reads that do not match the homozygous calls from their genotyp-

ing arrays (Supp. Table 1).  Next, we created in-silico data sets by 

mixing a primary sample with one or more contaminants at spe-

cific contamination levels (See Supp. Material).  Reassuringly, the 

estimate of the contamination level of the primary sample alone 

was 0.08%.  ContEst was able to accurately predict the level of 

contamination across a wide range of conditions including more 

than a single contaminating sample. (Fig 1b,c)  

 

In order to assess the accuracy as a function of sequencing depth 

we down-sampled the depth of the sequencing data (Fig 1d), and 

demonstrated that ContEst produces accurate estimates even with 

average coverage < 5x. 

 

Applying the method to data obtained from the TCGA Ovarian 

publication (Supp. Table 2) indicates that low levels of physical 

contamination are common  (Fig 1e).  Independent validation of all 

somatic events likely ensured that this contamination did not cause 

false positives in the publication.  However, given a distribution of 

contamination as seen in TCGA (Fig 1e), and an estimated error 

rate at non-dbSNP sites from contamination as shown in Figure 1a, 

a typical cancer project might expect > 10% of the samples to have 

> 1.5% contamination, causing ~0.2 errors/mb per sample, which 

is a significant fraction of the typical somatic mutation rate of 

1/mb per sample. 

 

In addition, ContEst has proven to be essential in lab quality 

control to identify and monitor sources of contamination, which 

has helped decrease contamination at the Broad Institute. 
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Fig. 1 (A) False-positive somatic mutations detected per megabase on in-silico contaminated data; most cancers have ~1 true event per megabase (B) accuracy with single con-

taminating sample (C) accuracy with multiple contaminating samples (D) accuracy with respect to read depth; shaded areas indicate 95% confidence interval (E) contamination 

estimates of TCGA Ovarian dataset 
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