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Evaluation of next-generation sequencing software
in mapping and assembly

Suying Bao1, Rui Jiang2, WingKeung Kwan3, BinBin Wang4, Xu Ma4 and You-Qiang Song1

Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic
research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new
non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of
higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS)
platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS
platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet
and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared
the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific
biological applications.
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INTRODUCTION
‘Next-generation sequencing’ (NGS) platforms has been introduced
and are wildly available recently,1,2 although large-scale sequencing
laboratories were significant contribute to Human Genome Project.3,4

The limitations of the conventional Sanger (or di-deoxy terminator5)
strategy urgently required certain new technologies for sequencing
human genomes in parallel despite these dramatic improvements in
this era. Thanks to the recent availability of optical instruments and
the application of molecular biology,1 a series of new massively parallel
sequencing technologies, the NGS technologies, have tremendously
changed this scenario.
Three platforms have been availabile: the Roche/454 FLX (30)

(http://454.com/products-solutions/454-sequencing-system-portfolio.
asp), the Illumina/Solexa Genome Analyzer (7) (http://www.
illumina.com/pages.ilmn?ID¼203) and the Applied Biosystems
SOLiDTM System (http://www.appliedbiosystems.com/absite/us/en/
home/applications-technologies/solid-next-generation-sequencing.html).
These methods are all based on a template amplification phase
before sequencing. Two new systems, the Helicos HeliscopeTM
(www.helicosbio.com) and Pacific Biosciences SMRT (www.pacific
biosciences.com) instruments,6 which avoid the amplification step
and use single molecule as template, were also introduced recently.
These new technologies are advantageous because of their high

throughput and low cost per base with over one billion reads per
run incurring significantly lower base-cost,2 which have given great

impetus to the achievement of the 1000 Genomes Project goal.7 These
important characteristics permit the ultra-deep sequencing techno-
logies to be widely used in the field of biology and medical research.
NGS technologies have also made a huge and ongoing impact on
transcriptome, gene annotation and RNA splice identification in
addition to the traditional applications of DNA sequencing in genome
resequencing and SNP discovery, Metagenomic8 and genome methyl-
ation analysis9 have also benefited from these new technologies.
A new applications is also likely to be unveiled in the coming years.1

The most fundamental steps for almost all of these applications are the
mapping of the reads to the reference genome and the assembly
of the reads to attain the desired DNA sequence for analysis.10

However, certain obstacles stemming from the NGS’s inherent
characteristics need to be eliminated before these technologies can
be extensively used. The limitations on short read lengths (typically
35–400 bp compared with 650–800 bp of Sanger-based technology
reads), low reading accuracy in homopolar stretches of identical bases,
and non-uniform confidence in base calling require more efficient
software and algorithms to help these new technologies develop
further in the immediate future. Massive tools for NGS reads mapping
and assembly have been flooding the market until now. We will only
discuss some of the software, which we have first-hand experience on
(considering the rapid developments in this field), and compare their
working efficiency in terms of sensitivity, accuracy, speed and ran-
dom-access memory (RAM) requirement.
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MAPPING
Mapping tools overview
The most important step in NGS analysis is the mapping of reads to
the original sequences.1 Alignment, as a classical problem in bioinfor-
matics, requires finding the most credible source for the sequenced
DNA,11 using the information of which species the reads have been
generated. We also have to consider two fundamental issues aside
from the shorter reads that are produced by NGS (compared with
those from gel-capillary technology). One is the significantly greater
amount of data, which requires optimized memory usage and speed,
and the other is the different error profiles of data from the previous
technologies. These call for algorithms that can be used to obtain as
much information as possible from the sequencing data.10 The
traditional methods such as the pure Smith-Waterman dynamic
programming, BLAT or BLAST may map the reads in a few days
(given a large and expensive computer grid), however, such grids are
not available to everyone. Some of the previous programs that are
performing for the Sanger sequencing reads have not yet adapted to
the huge volumes of data produced by NGS. Moreover, certain error
characteristics with second generation sequencing, for example, Roche
454, have the tendency to have insertion or deletion errors during
homopolymer runs,12 therefore, they need to be considered when
designing analysis tools.
Many methods are introduced and tools or programs based on

these algorithms have been reported on an almost weekly basis to meet
these challenges.13 Doruk Bozdag and Umit Catalyurek from the Ohio
State University proposed six parallelization methods to improve the
hash/index-based short-sequence mapping: partitioning reads only,
partitioning genome only, partition reads and genome, suffix-based
assignment (SBA), SBA after partitioning reads and SBA after parti-
tioning genome (see Bozdag et al.14 for the details of the algorithms).
CloudBurst, presented by Schatz et al.,15 is a sensitive parallel
seed-and-extend read-mapping algorithm, optimized for mapping
single-end (SE) reads. BreakDancer, consisting of two complemen-
tary algorithms (BreakDancerMax and BreakDancerMini), supports
pooled analysis across multiple samples and libraries.16 Clement
et al.17 introduced a program called GNUMAP (Genomic Next
generation Universal MAPper), which uses the quality score to get
more accurate results from fewer sequencing runs (which are often
costly). Other tools such as PASS,18 SOAP2,19 Bowtie,20 CloudBurst,15

MAQ,21 ZOOM,22 SHRIMP,23 PERM24 and others are also designed
recently for NGS data.
Some researchers categorized the tools based on whether the

genome or reads are indexed.1,25 Certain software, such as Cloud-
Burst,15 Eland, MAQ,21 RMAP,26 SeqMap,27 SHRiMP23 and ZOOM,22

work by constructing hash tables for short reads and mapping them to
the original genome sequences. The memory occupancy of these
programs depends on the amount of reads that they processed, but
it would be time consuming to scan the whole-genome when few
reads are mapped.25 Some programs such as BFAST,28 Bowite,20

BWA,25 MOM,29 MosaikAligner (http://bioinformatics.bc.edu/marthlab/
Mosaik), NovoAlign (http://www.novocraft.com), SOAP,19 PASS,18

PerM,24 ProbeMatch,30 SSAHA2,31 index genomic sequence. This kind
of software can easily be parallelized to work on multithreading at the
cost of larger memory occupancy if the original genome is large such as
the human genome sequence. However, this limitation can be ignored if
more efficient strategies are involved in the indexing process, similar to
what Bowtie, SOAP2 and BWA do. In fact, indexing the genome and
mapping the reads to the index usually occupy similar RAM as in the case
of inverse operation (indexing the reads and mapping the reads to the
genome).1 The third category that includes Slider I and Slider II32

achieves short-reads alignment by merge-sorting the subsequences of
the genome and the tags from NGS platforms (mainly Illumina/Solexa).
These mapping tools for NGS, when referring to indexing strategies,

can also be divided into two main categories: hash table-based
algorithms and Trie/Burrows–Wheeler Transform (BWT)-based algo-
rithms. The former approach that basically follows seed-and-extend
paradigm was the first wave of alignment programs. Many improve-
ments have been developed since the very first hash-based algorithm,
BLAST, to adapt to the specific characteristics of NGS reads mapping.
First, the concept of spaced seed is introduced by Lin et al.22 on the
seeding approach, and several programs23,33 have implemented q-gram
filter and multiple seed hits while seeding. Another development was on
the seed extension aspect, in which CPU SIMD instructions are involved
to achieve parallelize alignment and dynamic programming was used to
accelerate alignment speed. Most of the software available now (all the
programs mentioned above, excluding Bowtie, BWA and SOAP2) are
based on this strategy. The trie-based algorithms efficiently cut down
the complexity of inexact matching problem to the exact matching
problem.34 However, the memory used to hold the full occurrence array
and prefix/suffix array is huge. The introduction of BWT algorithm35

has significantly reduced the memory desired and led to the develop-
ment of several tools like SOAP2 and Bowtie. Readers who are
interested to know more about the Trie-based algorithm and BWT
concept can refer to Li and Durbin.25

The software mentioned above can also be classified into two
groups based on whether the ‘quality scores’ of nucleotide is involved
during the mapping. Quality scores that come with reads from NGS
platforms (mainly from Illumina) are, arguably, crucial in preventing
the possibility of trivial matches during the mapping. Most of the
tools18–26,28 available now use base quality information when they do
mapping tasks, although some of them may not fully use it to advance
mapping accuracy. However, there are also some programs, such as
CloudBurst, SeqMap, MOM, ProbeMatch and Slider, that involve
nucleotide information only for short reads alignment. Slider, on
another hand, fully utilizes short reads’ probability information (given
in the prb file from Illumina Sequence Analyzer) to reduce the
alignment problem space.32 More details on the tools mentioned
above are in Table 1.

Evaluation of mapping tools
To illustrate the performance of these mapping tools, we basically
consider the following statistic indexes: mapping speed, RAM occu-
pancy, sensitivity (measured as the percentage of reads mapped) and
accuracy (in terms of the percentage of reads mapped correctly). We
evaluated the performance of several tools, namely, SOAP_2.2, Bow-
tie_0.12.5, SeqMap_1.0.13, MOM_0.6, SHRiMP_2.0.1, PASS_v1.2,
BWA_0.5.9, RMAP_v2.05, Mosaik_1.1.0021 and SSAHA2_v2.5.3,
either using simulated data or the real data from Illumina platform.
Those tools, with versions currently available during the time of our
research, are widely used in the fields of Illumina reads mapping
analysis. We first performed a simulation work on the chosen tools
and summarized their efficiencies in terms of speed, memory usage,
sensitivity and accuracy. Then we evaluated their mapping capacities
on real applications, with Illumina reads from 1000 Genomes Project
Database (http://www.1000genomes.org/data). Based on the evaluated
tools’ own heuristics, we fixed parameters so as to get all programs’
equally best matches, with up to two mismatches.

Evaluation on simulation data
We used dwgsim, a utility for whole-genome Illumina reads simulation,
contained in DNAA_0.1.2 (http://sourceforge.net/projects/dnaa/), to
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Table 1 Tools for the analysis of next generation sequencing data

Program Website

Open

source

Quality score

involved

Mapping

strategy Description Reference

CloudBurst http://sourceforge.net/apps/

mediawiki/cloudburst-bio/

index.php?title¼CloudBurst

Yes No Hash the reads Either all alignments or the unambiguous best alignment for each

read with any number of mismatches or difference would be reported;

running time required is linearly increase with the number of reads

mapped, and near linearly decrease as the number of processors

increase

15

Eland None No Yes Hash the reads Probably the first read aligner; works only for 32-bp single-end reads

by itself, with GAPipeline extending its ability

Maq http://maq.sourceforge.net Yes Yes Hash the reads Based on a so-called ‘spaced seed indexing’ strategy, it can effi-

ciently winnow the candidate locations within the reference

21

RMAP http://rulai.cshl.edu/rmap/ Yes Yes Hash the reads Can map reads with or without quality scores; supports paired-end

reads or bisulfite-treated reads mapping; no limitations on read

widths or number of mismatches

26

SeqMap http://biogibbs.stanford.edu/

Bjiangh/SeqMap/

Yes No Hash the reads Maps dozens of millions of reads to a genome with several billions

base pair length; can deal with mutations, insertions/deletions;

supports various input/output formats, command option lines are

also available

27

SHRiMP http://compbio.cs.toronto.edu/

shrimp/

Yes Yes Hash the reads SAM output format; supports both letter space and color space reads;

allows paired-end reads alignment, parallel computation

23

ZOOM http://www.bioinfor.com No Yes Hash the reads Based on spaced seed strategy; 100% sensitivity for a wide range of

read length and mismatches; a single CPU with 6.5G memory, is

capable to map 15" coverage of a human genome in 1 day

22

BFAST http://sourceforge.net/projects/

bfast/files/

Yes Yes Hash the genome Fast and accurate mapping of tags to genome sequences 28

MOM http://mom.csbc.vcu.edu/ Yes No Hash the genome No indels are allowed while mapping, but mismatches are tolerant;

establishes a seed hash table for exactly matching short seeds

between reference sequence and short reads

29

Mosaik http://bioinformatics.bc.edu/

marthlab/Mosaik

Yes Yes Hash the genome Based on Smith-Waterman algorithm; supports pair-wise alignments

and produces reference-guided assemblies with gapped alignments;

written in highly portable C++

SSAHA2 http://www.sanger.ac.uk/

resources/software/ssaha2/

Yes Yes Hash the genome Support most sequencing platforms (ABI-Sanger, Roche 454, Illu-

mina-Solexa); wild range of output formats (SAM, CIGAR, PSL and so

on) are available; a separate package for pile-up pipeline analysis and

genotype calling is also included

31

NovoAlign http://www.novocraft.com No Yes Hash the genome Allows gaps up to 7bp on single-end reads, even longer on paired-

end reads aligns with up to 8 or more mismatches per read, up to 16

on paired-end reads

PASS http://pass.cribi.unipd.it Yes Yes Hash the genome Improves the execution time and sensitivity; performs fast gapped

and ungapped alignments of short reads onto a reference genome;

implemented in C++, supported on Linux and Windows

18

PerM http://code.google.com/p/perm/ Yes Yes Hash the genome High sensitivity and speed contributed by the use of periodic spaced

seeds with higher weight; no paired-end mapping available now

24

ProbeMatch http://pages.cs.wisc.edu/

~jignesh/probematch/

Yes No Hash the genome Tolerant for gapped and ungapped alignments with up to 3 errors;

uses gapped q-grams and q-grams of various patterns to identify

target hits to a query sequence

30

Slider http://www.bcgsc.ca/platform/

bioinfo/software/slider

Yes No Merge sorting High alignment accuracy and efficiency; with probabilities while

matching bases, it reduces the percentage of base mismatches; high

SNP discovery rate

32

Slider II http://www.bcgsc.ca/platform/

bioinfo/software/slider

Yes No Merge sorting 32

Bowtie http://bowtie.cbcb.umd.edu Yes Yes BWT-based, index

the genome

Borrows a technique called BWT, the algorithm is more complicated

than Maq’s, but more than 30-fold faster

20

BWA http://bio-bwa.sourceforge.net/

bwa.shtml

Yes Yes BWT-based, index

the genome

Implements two different algorithms, both based on BWT, the first

algorithm is based on BWA-short for short queries up to B200bp

with low error rate (o3%) and supports paired-end reads, the second

algorithm, BWA-SW, is designed for long reads with more errors.

25

SOAP2 http://soap.genomics.org.cn/# Yes Yes BWT-based, index

the genome

A updated version of SOAP, in super fast and accurate alignment for

large amounts of short reads from illumina; supports a wide range of

read length

19

Abbreviations: BWT, Burrows–Wheeler transform; CPU, central processing unit; SAM, Sequence Alignment/Map; SNP, single-nucleotide polymorphism; SOAP, short-oligonucleotide alignment program.
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generate Illumina-like short sequences, using the default empirical
error model illustrated on DNAA’s Whole-Genome Simulation web
(http://sourceforge.net/apps/mediawiki/dnaa/index.php?title¼Whole_
Genome_Simulation). In total, we generated 15 million reads with
76bp length, using the complete human genome (hg18) as a reference.
Details of the codes used to run those tools mentioned above with
the simulation data can be found in Supplementary Information S1.
Table 2 provides us the results of the simulation work with statistics on
the number of reads mapped, the amount of reads correctly mapped,
time consumed and RAM required.
From Table 2, we found that for Illumina SE reads mapping,

SHRiMP provided the highest true mapping percentage (around
99%) among all programs, at the expanse of consuming much more
time and RAM than others. BWA, which is the second most accuracy
(around 4% less than that of SHRiMP), performed tremendously
faster than SHRiMP and occupied least memories among all tools.
Other tools, including Bowtie, Mosaik, RMAP, SeqMap and SOAP, can
all correctly catch more than 75% genuine matches, with SOAP most
speedy while Bowtie most RAM-saved. The apparent poor perfor-
mance of PASS on sensitivity and accuracy has been, to some extent,
explained in Horner’s simulation studies.1 For paired-end (PE)
mapping tasks, the validate alignments of BWA, who can correctly
map more than 98% of all reads to human reference, with least RAM
usage and acceptable time consuming, are remarkably more than
the alignments of other tools. SSAHA2 behaved similarly as BWA
did in terms of mapping sensitivity and accuracy. However, it
occupied around four folds of RAM and time than BWA did for
the same task. Among all the tools stated as PE supported, Bowtie
and RMAP showed absolutely lower coverage rates for Illumina
mates mapping.

Evaluation on real data
To further compare the behavior of those tools on real applications,
we used around 12 million Illumina SE reads with length of 76 bp

(AC: ERR008834) and 17 million pairs of 76 bp reads (AC:
SRR043391) from Sequence Reads Achieve to align against the
whole human genome sequences (assembly: NCBI36.1/hg18).
Table 3 illustrates the results of this evaluation experiment. Compared
with the results on Table 2, Table 3 indicated that the conclusions of
evaluation on real applications are generally consistent with the results
from simulation work, except that Mosaik acted slightly better than
BWA, and SHRiMP performed not as well as it did in PE mapping.
Thus, the parameters, such as sequence errors, fraction of indels and
outer distance between the two ends, set in our simulation experiment
seemed to have little effect on capturing the general divergences of
mapping performance between those tools selected.
As additional remarks to the experiments mentioned above, several

points needed to be stated here: (1) MOM has also been tested with
our simulation data and real reads from 1000 Genomes Project,
however, this program seems not so stable to input file formats and
no certain bug information was given to guide users to resolve the
problem. (2) Although a ‘PE’ section has been posted on PASS website,
it seems that PASS was still on developing of this application. (3) All
experiments are run on our 64-bit quad-core Linux system, with 32
GB RAM.

Discussions on mapping tools
Generally speaking, BWA, Mosaik, SHRiMP and SOAP all provide
satisfactory mapping results in both SE and PE Illumina reads
alignments, with BWA using much less RAM than the others, which
is mostly owed to its BWT-based algorithm, whereas SOAP providing
the fastest performance among all tools, which is likely benefited from
its core algorithm (2way-BWT). The differences of those methods on
mapping sensitivities could mostly be attributed to the heuristics
applied by different algorithms in detecting imperfectly matching
positions.1 The apparently excellent performance of BWT-based
aligners in time consumption and memory occupancy could mainly
be attributed to their multithreading processing characteristic and

Table 2 Results of mapping simulated illumina reads against human genome sequences (hg18)

Task Tools Reads mapped Reads mapped correctly Total processed time (m) RAM (GB)

SE Bowtie_0.12.5 11878078 (79.19%) 11857489 (79.05%) 271.37 5.09

BWA_0.5.9 14416728 (96.11%) 13881061 (92.54%) 324.31 3.17

Mosaik_1.1.0021 11774573 (78.50 %) 11641578 (77.61%) 315.26 20.61

PASS_v1.2 2895642 (19.30%) 1384494 (9.23%) 177.95 18.69

RMAP_v2.05 11292461 (75.28%) 11261662 (75.08%) 397.845 6.1

SeqMap_1.0.13 11878407 (79.19%) 11416970 (76.11%) 5049.433 8.01

SHRiMP_2.0.1 14990830 (99.93%) 14442127 (96.28%) 9389.71 B32

SOAP_2.2 11877778 (79.19%) 11800703 (78.67%) 96.61 8.25

SSAHA2_v2.5.3 — — — —

PE Bowtie_0.12.5 2756 (0.02%) 1379 (0.01%) 227.25 5.09

BWA_0.5.9 14919378 (99.46%) 14752604 (98.35%) 616.8 3.2

Mosaik_1.1.0021 11777394 (78.52 %) 11638676 (77.59%) 576.8 20.67

PASS_v1.2 — — — —

RMAP_v2.05 56755 (0.39%) 3756 (0.03%) 1399.29 30.35

SeqMap_1.0.13 — — — —

SHRiMP_2.0.1 14270212 (95.13%) 14150450 (94.34%) 15846.21 B32

SOAP_2.2 9377074 (62.51%) 9364090 (62.43%) 116.27 12.63

SSAHA2_v2.5.3 14675759 (97.84%) 14400877 (96.01%) 2884.5 13.38

Abbreviations: PE, paired-end reads mapping; RAM, random-access memory; SE, single-end reads mapping.
The index ‘Total processed time’ includes the time used for indexing genome or query sequences, the time used to splice genome or query sequences file (the whole genome sequence file or the
query file has to be spliced into smaller ones when the RAM needed for a certain task exceeds the RAM available), and the time for mapping. ‘RAM’ is measured as the maximum RAM used during
the whole mapping process, including indexing and alignment.
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independence from the amount of reads to be aligned.25 Although
certain programs, such as SHRiMP, have elegant performance in terms
of mapping sensitivity and accuracy, the enormous time consuming
and RAM occupancy need to be considered once again before using
them as an aligner for large mammalian genomes. However, it would
also be an option when it comes to mapping small genomes, like
Drosophila.
Till now, only a few open source tools, such as Mosaik, PASS and

SSAHA2, are available for 454 mapping and their sensitivities in
catching mapping positions are not so satisfied, which calls for an
urgent need for developing novel software supporting 454-like longer
(typically 400–1000 bp) NGS reads. Although several programs, such
as Mosaik, PASS, Bowtie, SHRiMP and/or some other tools, are
declared as color-space-mapping available, their capabilities in match-
ing SOLiD-specific reads are pretty low, which may mainly due to the
specific design of ABI outputs. Algorithms involved with advanced
spaced seeds would be a considerable modification for SOLiD
mappers, as in Laurent Noe et al.36 As this review mainly focuses
on comparing the capacities of Illumina aligners, no certain evaluation
results about 454 and SOLiD-supported tools are provided here.
But authors also has performed simple testing studies on the tools
declared as 454-bared, namely Mosaik, SSAHA2, PASS, and tools
called themselves as color-space-tolerated, including Mosaik, PASS,
Bowtie and SHRiMP, using 454 and SOLiD real reads from Sequence
Reads Achieve (http://www.ncbi.nlm.nih.gov/sra). Readers with inter-
ests in applying those programs for 454 and SOLiD reads mapping
could refer to Supplementary Information S2 and S3, in which details
of the data involved and results of the experiments are represented,
respectively.
Overall, decisions on choosing an appropriate method against

another should mostly depend on the amount of reads to be mapped,
the reference genome to be considered, and the computing equipment
available. The final goals of certain experiments may also determine or
help determine the choice.

ASSEMBLY
Assembly strategies
The lengths of individual sequencing read from either Sanger-based
technology or novel NGS platforms are significantly shorter than the
desired length of DNA sequence.10 A so-called technology ‘Assembly’,
first designed for cosimid37 and then used in genomic analysis, was
introduced in the late 1980s and early 1990s to resolve the problem.
The fundamental concept in this technology is to group the random
fragments of a significantly longer DNA sequence into contigs and
then contigs into scaffolds to reconstruct the original DNA sequence.
It can be divided into two different approaches: de novo approach and
comparative (resequencing) approach based on the different focus of
this technology.38

The de novo approaches mainly focus on reconstructing genomes
that have never been sequenced, although it is sufficient for compara-
tive approaches to map the reads to the guided sequence to char-
acterize a newly sequenced organism. The de novo methods are
irreplaceable, especially in discovering new, previously unknown
sequences—this is essential for characterizing biological diversity of
our world—but they are mathematically more complex and needs
larger memory than the comparative ones. There are mainly two
factors that influence the complexity of de novo assembly technology:
the length and the volume of the reads. Shorter reads may complicate
the layout phase of an assembly (because it is more difficult for
de novo assemblers to handle repeats with short reads) but they are
easier to be aligned. More reads also pose quadratic or even expo-
nential complexity to the underlying algorithms but they promise
better identification of sequence overlaps. Managing the large volumes
of reads with even shorter length (typically 35–400 bp, which is
significantly shorter than the traditional ones’ 600–800 bp) from
NGS and fully exploiting the deeper coverage produced by NGS
technologies have become the most crucial issues being considered
when researchers design assemblers for NGS.
These challenges lead to more considerable efforts being exerted in

the modification of three widely used de novo assembly strategies:10,39

greedy, overlap–layout–consensus and Eulerian or de Bruijin graph.40

The success of the recently introduced NGS assemblers is mainly
caused by the development of pragmatic engineering and heuristics on
assembly algorithms.39 Some of the tools, such as SSAKE,41

SHARCGS,42 VCAKE,43 and QSRA,44 work by using greedy graph
strategy. Programs applying this algorithm undertake one basic
operation: iterative extension (that is, given any read or contig, it
will merge with the one with the largest overlap). The three programs
(SSAKE, VCAKE and QSRA) have been developed to handle imper-
fectly matching reads,41,43,44 whereas SHARCGS is widely used on
uniform-length, high-coverage and unpaired short reads. QSRA, the
most recently developed software in this category, has an advantage in
quality-value scores to help users deal with base call errors. It provides
better and more preferable performance in terms of speed and output
quality44 compared with the other tools mentioned above. The second
category of software that includes CABOG,45 Edena,46 Newbler47 and
Shorty48 are based on overlap-layout-consensus. This strategy involves
three main steps. First, assemblers compare the reads to each other to
construct an overlap graph in the first overlap discovery stage. Second,
the overlap graph is analyzed and the appropriate paths traversing
through the graph are identified in the layout stage. Third, consensus
sequence will be determined through multiple sequence alignment.
Newbler, among the overlap-layout-consensus-based software, was
specifically designed to handle the ambiguity in the length of 454’s
homopolymer runs, whereas the other widely used programs (dis-
tributed by Illumina/Solexa), including Shorty, can also be applied to

Table 3 Results of mapping illumina real reads against human
genome sequences (hg18)

Task Tools Reads mapped

Total processed

time (m) RAM (GB)

SE Bowtie_0.12.5 10188613 (80.09%) 308.77 5.09

BWA_0.5.9 11279913 (88.67%) 236.36 3.17

Mosaik_1.1.0021 10722310 (84.3 %) 351.63 20.67

PASS_v1.2 2250215 (17.69%) 155.39 19.7

RMAP_v2.05 10104883 (79.44%) 366.54 5.62

SeqMap_1.0.13 10323104 (81.15%) 5583.95 5.94

SHRiMP_2.0.1 11037849 (86.77%) 8681.61 26.58

SOAP_2.2 10201730 (80.20%) 96.57 8.26

SSAHA2_v2.5.3 — — —

PE Bowtie_0.12.5 4417110 (24.61%) 232.85 5.09

BWA_0.5.9 14440897 (80.46%) 614.26 3.17

Mosaik_1.1.0021 14968995 (83.4 %) 757.45 20.77

PASS_v1.2 — — —

RMAP_v2.05 74276 (0.41%) 9150.933 30.18

SeqMap_1.0.13 — — —

SHRiMP_2.0.1 9581693 (53.38%) 19795.43 B32

SOAP_2.2 10454273 (58.25%) 122.71 18.07

SSAHA2_v2.5.3 12794188 (71.28%) 6635.5 14.36

Abbreaviations: PE, paired end; RAM, random-access memory; SE, single end.
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ABI/SOLiD and Helicos. CABOG, Newbler and Shorty can manage
base calling error and repeats with their specific schemes, whereas
Edena was designed for unpaired reads with uniform length. Newbler
particularly applies instrument metrics to overcome inaccurate calls
caused by homopolymer repeats in 454.39 CABOG uses a so-called
‘rocks and stones’ technique,49,50 whose main procedure could be
summarized as ‘unitig-contig-scaffolds’, for base call correction.45

Shorty innovatively estimates the intercontig distances from the
mate pairs using a few seeds of 300–500 bp length. The third category
of software based on de Bruijn graph approaches40 are widely used in
assembling data from the Solexa and SOLiD platforms. The tools in
this category (such as ABySS,51 ALLPATHS,52 EULER-SR,53 SOAPde-
novo54 and Velvet55) have applied certain heuristic strategies to reduce
the complexity of the de Bruijn graphs, which trivialize assembly
problem by finding the path that would traverse each edge of the
graph exactly once. EULER-SR52 mitigates error sequencing impact by
constructing different K-mer sizes De Bruijn graphs and reduces graph
complexity by applying low-quality read ends and PE constraints.
Velvet55 uses an error-avoidance read filter for error calls correction
and adopts a pebble smoothing technique, involving read threading
and mate pairs for graph reduction. ABySS is an scalable assembly
software and designed to overcome memory limitations in large

genome assembly by distributing graph and graph computation across
a compute grid. ALLPATHS targets large genomes and invokes tow
pre-processors, read-correction processor and ‘unipaths’ creation
processor, for erroneous base call correction and graph simplification.
Finally, SOAPdenovo is, by far, the only software amalgamating de
Bruijin graph and overlap-layout-consensus strategies together, in
which a contig graph is constructed by the de Bruijin graph method
although its complexity is reduced by cutting transitive edges and
isolating multi-path involved contigs. Its transitive link deduction
scheme is similar to CABOG’s ‘rocks and stones’ method and to
Velvet’s breadcrumbs and pebble techniques.39 Table 4 shows more
details on the assembly programs. Several papers10,38,39 have also
provided significant insights on the technical strategies and tools of
the de novo assembly of short reads.

Evaluation on assembly tools
The efficiency of assemblers is basically assessed through two indexes:
size and accuracy of the assemblies’ contigs and scaffolds.39 However,
N50, one of the widely used statistics for size measurement, can only
be comparable between different assemblers when each is measured
with the same combined length value. On another hand, the accuracy
of assemblies is generally difficult to measure, although certain

Table 4 Tools for de novo assembly analysis

Program Website Strategy NGS platforms Overview Reference

QSRA http://qsra.cgrb.oregonsta-

te.edu/

Greedy Sanger, Solexa Quality-value guided Short Read Assembler, it is created to take advan-

tage of quality-value scores to handle base call errors

44

SHARCGS http://sharcgs.molgen.mpg.de/

index.shtml

Greedy Solexa SHort-read Assembler based on Robust Contig extension for Genome

Sequencing, suitable for un-paired reads (25–40bp) with high coverage

42

SSAKE http://www.bcgsc.ca/platform/

bioinfo/software/ssake

Greedy Solexa (SOLiD?,

Helicos?)

Short Sequence Assembly by progressive K-mer search and 3¢ read
Extension, with a prefix tree, it would progressively search for perfect 3¢-
most K-mers

41

VCAKE http://sourceforge.net/projects/

vcake/

Greedy Solexa (SOLiD?,

Helicos?)

Verified Consensus Assembly by K-mer Extension, by using high-depth

coverage, it could assemble millions of short reads even in the presence

of sequencing error

43

CABOG http://sourceforge.net/apps/

mediawiki/wgs-assembler/

index.php?title¼Main_Page

OLC Sanger, 454,

Solexa

Celera Assembler with the Best Overlap Graph, robust to homopolymer

run length uncertainty, high read coverage and heterogeneous read

lengths

45

Edena http://www.genomic.ch/

edena.php

OLC Solexa Exact DE Novo Assembler, based on overlap layout paradigm, uniform-

length reads are indexed in a prefix array and all perfect, error-free

contigs are produced

46

Newbler http://contig.wordpress.com/ OLC 454, Sanger Particularly designed for 454 platforms, customs receive frequent

updates, the source code is not generally available.

47

Shorty http://www.cs.sunysb.edu/

Bskiena/shorty/

OLC Helicos, Solexa,

SOLiD

Using a few (5–10) seeds of length 300–500bp to assemble short-paired

reads; can accurately estimate intercontig distance from multiple span-

ning mate pairs.

48

ABySS http://www.ncbi.nlm.nih.gov/

pubmed/19251739

DBG Solexa, SOLiD Assembly By Short Sequences, a parallelized sequence assembler 51

ALLPATHS http://ftp.broadinstitute.org/

pub/crd/ALLPATHS/

DBG Solexa, SOLiD? Two key concepts in the algorithm: (1) finding all paths across a given

read pair; (2) localization, using pairs to isolate regions of the genome

and assemble them

52

EULER-SR http://euler-assembler.ucsd.edu/

portal/

DBG Sanger, 454,

Solexa, SOLiD

Eulerian approach-based assembler, stated to be the assembler gener-

ating optimal short read assemblies of bacterial genomes

53

SOAPdenovo http://soap.genomics.org.cn/

soapdenovo.html

DBG Solexa Has been integrated into the SOAP package; designed for large-genome

assembly in a cost-effective way

54

Velvet http://www.ebi.ac.uk/Bzerbino/

velvet

DBG Sanger, 454,

Solexa, SOLiD

Ideal for short reads (25–50bp) and paired-end reads to produce contigs

with significant length; tolerant color space reads

55

Abbreviations: DBG, de Bruijin graph; NGS, next-generation sequencing; OLC, overlap–layout–consensus; SOAP, short-oligonucleotide alignment program.
Note: all the items in the fourth column, excluding Shorty and ALLPATH EULER-SR, which were further checked by the author, were cited from http://en.wikipedia.org/wiki/Sequence_assembly.
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inherent accuracy measurement may be used for specific assembler. In
our study, we applied six statistical values, namely, maximum contig
length, minimum contig length, average contig length, genomic
coverage (measured as the total length of reads used for constructing
contigs divided by the length of all queries), total processed time and
RAM occupancy, to illustrate the trade-offs between contig length and
genomic coverage that certain assemblers have made while they are
treating with large volume of short reads. Six widely used assembly
tools were involved, including QSRA,44 SSAKE_v3-5,41 Edena_2.1.1,46

AByss_1.2.6,56 SOAPdenovo_1.0554 and Velvet_1.0.09.55 Limited by
our computer RAM available now (32 GB), we extracted 1.5 million
reads and pairs from SE reads file ERR008834 and PE reads file
SRR043391, respectively, as input queries. The results are shown in
Table 5.
From Table 5, we see that, in SE test, SOAPdenovo and QSRA

yielded distinctly higher genomic coverage than the other tools,
around 60% higher, with generally a larger number of short contigs.
As a contrast, SSAKE and Edena usually produce longer contigs with
much lower genomic coverage. Among all the tools been tested,
SOAPdenovo and AByss were the fastest, whereas Edena and QSRA
were the most memory-efficient. For mate reads assemblies, wherein
QSRA and Edena are not available, SOAPdenovo granted the most
elegant performance with the highest genomic coverage and the least
time and RAM requirement. AByss yielded the longest contigs,
whereas reads from SSAKE were longer in general. Pop38 and Miller
et al.39 have given further insights on the performance of the other
de novo tools and assembly algorithm of NGS.

Discussions on assembly tools
As an interim conclusion, in our experiments SOAPdeovo offered
more satisfactory performance, in terms of speed, memory usage and
genomic coverage, than other tools in both SE and mate-end condi-
tions, whereas QSRA behaved inferiorly in individual reads assembly.
However, reads from both of those two programs are usually short.
On another hand, SSAKE and Edena generally produce longer con-
tiges with lower coverage rates. AByss could produce longest contigs
using mate reads, although the average length of contigs from AByss is
short. Among those tools been tested, Velevet, SSAKE and AByss cost
more computer memory for the same task. In our experience, more
than 32GB memory is needed to handle larger volume (for example,
more than ten million) of input reads using these programs. Also,
compared with other assemblers, Velvet and SSAKE are more time
consuming, which may limit their applications in the filed of de novo
assembly. In summary, such approaches mentioned above all have
to make a balance between the length of contigs and the coverage
of genome.
Nevertheless, the scale of the analysis and the types of assay may

decide the tool(s) to be used. Moreover, the heuristics for real reads
error and genomes repeats owed by a certain assembler, and the
computer source available may also profoundly influence the pro-
gram’s success in de novo assembly filed.

CHALLENGES AND PROSPECTS
Despite the strikingly attractive success of NGS in genomics and
post genomics, three main challenges, which could be summarized as
Computational Challenge, Developmental Challenge and Cross-Plat-
form Unification Challenge, are blocking, or in a not short period will
still block, the development of these new technologies from infancy to
mature.
The growing gap between massive output data from NGS platforms

and the computer source available to process and analyze them has to Ta
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be bridged in an urgent need. Aligning millions or even billions of
reads against a large mammalian genome as a complete experiment
becomes common in today’s genomic studies. However, super com-
puters with abundant memories to handle such big headaches are not
always available to every user. Timing is also an inevitable question
while dealing with NGS tasks. Thus, an extraordinarily efficient
algorithm is then urgently needed to reduce computing costs. Paralle-
lization strategies, like BWT algorithm applied by BWA, Bowtie and
SOAP2, have been proposed and managed to help aligners speed up
their execution time and reduce their computer memory requirement
with uncompromising results accuracy.14

As long as NGS technologies go on changing, developers of short
reads mapping and assembly software have to keep pace with these
novel techniques. To keep up or even exceed Sanger sequencers in
terms of read length, which has critical effects on detecting split
mapping signatures and de novo sequencing, NGS sequencing
machines all try to produce longer reads. Thus, future mappers for
short reads or NGS tools available now need to be adjusted as
programs compatible with longer reads. Furthermore, unfamiliar
data formats from so-called next–next-generation sequencers, such
as Helicos HeliscopeTM and Pacific Biosciences SMRT, explosive mass
of different experiments and divergent scale of analysis all call for
more robust and efficient algorithms in automatically redressing
parameters for specific demands.
Another main challenge met by developers of NGS mappers and

assemblers comes from the standards inconformity in size of inserts
between mates, error profiles and ‘true match’ benchmarks across
diverse NGS platforms. Different sizes of inserts, which are common
in variant NGS platforms, also have different potency in detecting
variants.57 Shorter insert sizes, compared with long inserts (which
offer advantages in detecting larger events), increase the sensitivity of
smaller events.58,59 Therefore, a combination of multiple libraries with
varying insert sizes will be a good choice in future studies.58,60,61

Furthermore, as different platforms produce reads with different
error models and also isolate ‘real alignment’ from multiple possible
matches with their own criterions, investigators are often embarrassed
when they explore the data from several platforms. Thus, a unified
standard for determining genuine match and a critical evaluation of
the quality of data from these technologies are in urgent need.62

In addition, considering that ‘NGS users are always puzzled by a
complicated maze of base calling, alignment, assembly, and analysis
tools with often incomplete documentation and providing no ideas
on how to compare and validate the outputs, Paul Medvedev et al.,57

recommended that new methods should combine the previous
approaches and possess different types of signatures to support
an event’.
Nevertheless, NGS approaches are undoubtedly here to stay and will

propel the development of bioinformatics in several areas such as
mapping, assembly, detecting variants, and other related areas, for
many years.1,62 Their advantages in speed and cost62 and their higher
capabilities in detecting divergent types of variants56,59–61,63 granted
their wide applications in the field of medical research and diagnos-
tics.64 Moreover, genomics,64 functional genomics,9 proteomics,64

transcriptome analysis,65 epigenetic research66 and the characteriza-
tion of new virus67 and bacterium68,69 all benefited from these
technologies immediately after their introduction into the market.

CONCLUSION
Challenges definitely remain to be justified for the further develop-
ment of NGS. More efforts need to be done, not only in the fields of
mapping and assembly, but also on the areas of so-called ‘downstream

analysis’, such as metagenomics, transcriptome analyses, small RNA
detection and/or other related areas. New considerations and ques-
tions will continue to emerge, thus novel programs have to evolve
rapidly to keep up with the pace of NGS and the changes in adoption
of these techniques.
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